Eruption dynamics inferred from microlite crystallization experiments: Application to Plinian and dome-forming eruptions of Mt Pelée (Martinique, Lesser Antilles)

نویسنده

  • Caroline Martel
چکیده

Decompression experiments have been conducted to simulate syn-eruptive crystallization in the volcanic conduit, in order to infer magma ascent rates and conditions during domeforming and Plinian eruptions of silicic arc volcanoes. The experiments were carried out starting from Mt Pelée rhyolitic interstitial melt (76 wt. % SiO2) and consisted in three consecutive steps: hydration, decompression, and annealing. Hydration (saturated and undersaturated) was performed at 850°C and 200 MPa and followed by isothermal decompression, either linearly or stepwise, to a final pressure, Pf, of 30 or 5-10 MPa. Decompression rates range from 0.003 to 25 MPa/min (decompression durations of 15 min to 40 days). Two samples were cooled by 25°C and 50°C during a 3-days step at Pf. Subsequent to decompression, the samples were held up to 15 days at Pf. The experiments generated three types of crystals: pre-, syn-, and post-decompression crystallization. The experiments basically differ from previous studies in that they are specifically designed to discriminate crystal nucleation from growth and to evaluate the influence of pre-decompression crystals on the decompression-induced crystallization. The effects of pre-decompression crystals, decompression rate, undercooling (Pf), and terminal cooling have been determined on plagioclase nucleation, growth, morphology, and composition. The main results i) suggest a positive correlation between decompression rate and the number density of plagioclases nucleated at Pf and ii) highlight the effect of predecompression crystals in further decompression-induced crystallization. The relations between the decompression conditions and the plagioclase characteristics have been used to infer Mt Pelée eruption dynamics, suggesting that i) Plinian magmas ascend from the reservoir within less than 1 hour (1-10 m/s), ii) dome and block-and-ash flows magmas ascend within more than 2-5 days, giving time for syn-decompression crystallization in su -0 06 65 22 9, v er si on 1 30 M ay 2 01 2 around pre-existent microlites, iii) dome magmas evidence long stagnation and cooling at low pressure, and iv) surge magmas ascend without significant crystallization (within less than ~4 days) and massively nucleate plagioclase at very low pressure. The extent and violence of dome destruction may depend on the size/age of the dome, with large/old domes favouring mildly-explosive BAFs, whereas small/young protodomes may generate highly-explosive surges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Basaltic explosive volcanism: Constraints from deposits and models

Basaltic pyroclastic volcanism takes place over a range of scales and styles, from weak discrete Strombolian explosions (!10–10 kg s) to Plinian eruptions of moderate intensity (10–10 kg s). Recent well-documented historical eruptions from Etna, Kı̄lauea and Stromboli typify this diversity. Etna is Europe’s largest and most voluminously productive volcano with an extraordinary level and diversit...

متن کامل

Rapid crystallization during recycling of basaltic andesite tephra: timescales determined by reheating experiments

Microcrystalline inclusions within microlite-poor matrix are surprisingly common in low intensity eruptions around the world, yet their origin is poorly understood. Inclusions are commonly interpreted as evidence of crystallization along conduit margins. Alternatively, these clasts may be recycled from low level eruptions where they recrystallize by heating within the vent. We conducted a serie...

متن کامل

Reconstructing the plinian and co-ignimbrite sources of large volcanic eruptions: A novel approach for the Campanian Ignimbrite

The 39 ka Campanian Ignimbrite (CI) super-eruption was the largest volcanic eruption of the past 200 ka in Europe. Tephra deposits indicate two distinct plume forming phases, Plinian and co-ignimbrite, characteristic of many caldera-forming eruptions. Previous numerical studies have characterized the eruption as a single-phase event, potentially leading to inaccurate assessment of eruption dyna...

متن کامل

A Neurocomputing Approach for Monitoring Plinian Volcanic Eruptions Using Infrasound

Plinian volcanic eruptions can inject a substantial amount of volcanic ash and gas into the stratosphere, which can present a severe hazard to commercial air traffic. A hazardous volcanic ash eruption was reported on April 14, 2010, and London’s aviation authority issued an alert that an ash plume was moving from an eruption in Iceland towards northwestern Europe. This eruption resulted in the ...

متن کامل

Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan

Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rocks. Previous models aiming to constrain source processes were unable to include realistic mechanical and thermal rock properties, and the role of thermomechanical heterogeneity in magma accumulation was unclear. Here we show ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012